首页 科技快讯 斯坦福100页论文评估大模型透明度:全都不及格

斯坦福100页论文评估大模型透明度:全都不及格

来源:晰数塔互联网快讯 时间:2023年10月19日 14:50

试问百模大战的当下,谁家大模型的透明度最高?(例如模型是如何构建的,如何工作,以及用户如何使用它们的相关信息)

现在,这个问题终于有解了。因为斯坦福大学HAI等研究机构最新共同发布了一项研究——专门设计了一个名为基础模型透明度指标(The Foundation Model Transparency Index)的评分系统。

它从100个维度对国外10家主流的大模型做了排名,并在透明度这一层面上做了全面的评估。

结果可谓是大跌眼镜!

若是以60分作为及格线,那么“参赛”的大模型们可以说是全军覆没,没有一个及格的……

来感受下这个feel:

排名第一的Llama 2,分数仅为54;紧随其后的便是BLOOMZ,得分53。

而GPT-4分数仅仅为48,排名第三;来自亚马逊的Titan Text成绩垫底,仅取得12分。

不仅如此,在斯坦福HAI官方的博客中,负责人Rishi Bommasani直言不讳地把OpenAI单拎出来说道:

基础模型领域的公司变得越来越不透明。

例如名字带“open”的OpenAI曾明确表示,与GPT-4相关的大多数信息将不会公开。

总而言之,团队认为大模型发展到现阶段,它们的透明度是一个非常重要的关键点,直接与是否可信挂钩。

而且更深层次的,他们认为这也从侧面反映了人工智能行业从根本上缺乏透明度。

一、100多页论文研究模型透明度

那么这个排名到底是怎么来的?

在成绩公布的同时,团队也把一篇厚达100多页的论文晒了出来。

正如我们刚才提到的,这次排名一共涉及到了100个指标维度。

若是“归拢归拢”着来看,可以将这些指标大致分为三大类,分别是:

上游(Upstream):指构建基础模型所涉及的成分和过程,例如计算资源、数据等;

模型(Model):指基础模型的属性和功能,例如体系结构、能力和风险等;

下游(Downstream):基础模型是如何分布和使用的,例如对用户的影响、更新内容、控制策略等。

将10大模型此次的成绩,按照上面的三大维度来看,得分细节如下:

从结果上来看,“上游”类指标的得分差异较为明显;例如BLOOMZ的“上游”类指标在整体得分中的占比较高。

而像Jurassic-2、Inflection-1和Titan Text,这三个模型的“上游”类指标得分直接为0。

如果将“上游”“模型”和“下游”视为三个“顶级域”,那么团队在它们基础之上,还分了更精细、更深入的13个“子域”

数据(Data)、劳动力(Labor)、计算(Compute);

方法(Methods)、模型基础(Model Basicis)、模型访问(Model Access)、功能(Capabilities);

风险(Risks)、缓解措施(Mitigations)、分布(Distributions)、使用策略(Usage Policy)、反馈(Feedback)、影响(Impact)。

13个“子域”划分下的细节得分情况如下:

至于完整的100个指标维度,可以参考下面这张图表:

当然,对于大模型领域最具热度话题之一的“开源闭源之争”,也在此次的研究中有所涉足。

团队将广泛可下载的模型标记为开源模型,“参赛选手”中有三位属于此列,分别是Llama 2、BLOOMZ和Stable Diffusion 2。

从排名结果中显而易见地可以看出,开源模型的得分普遍遥遥领先,唯有GPT-4的得分比Stable Diffusion 2高出了1分。

对此,研究人员也做出了解释:

这种差异很大程度上是由于闭源模型的开发人员在“上游”问题上缺乏透明度造成的,比如用于构建模型的数据、劳动力和计算。

此次模型透明度排名的更多细节内容,可参考文末的论文。

二、透明度为什么重要?

针对这个问题,斯坦福HAI在官方博客中也做出了相应说明。

例如在负责人Rishi Bommasani看来:

缺乏透明度,长期以来一直是数字技术消费者面临的一个问题。

在当下的互联网中充斥着诸多这样的问题,例如欺骗性的广告和定价、欺骗用户在不知情的情况下进行网购等等。

MIT博士Shayne Longpre认为,随着大模型越发火热并且在各行各业中迅速落地,科学家们有必要了解它们是如何设计的,尤其是“上游”的那些指标。

对于产业界来说,亦是如此,决策者们在面对“用哪个大模型、怎么用”等问题时,都需要建立在模型透明度的基础之上。

(论文地址:https://crfm.stanford.edu/fmti/fmti.pdf)

参考链接:

[1]https://hai.stanford.edu/news/introducing-foundation-model-transparency-index 

[2]https://github.com/stanford-crfm/fmti

[3]https://www.theverge.com/2023/10/18/23922973/stanford-ai-foundation-model-transparency-index

本文来自微信公众号:量子位 (ID:QbitAI),作者:金磊

相关推荐

8家国产大模型,内容真实性如何?
你的论文 “后劲儿” 有多大?AI预知模型告诉你
斯坦福大学校长辞职:被校报学术打假拉下马
Nature:机器学习再立功,斯坦福大牛团队实现无创早期肺癌筛查
斯坦福等新研究:随意输入文本,改变视频人物对白,逼真到让作者害怕
创业者视角的项目评估模型
大模型+机器人,发展到什么阶段了?
《头文字D》无人车版来了:斯坦福最新研究,自动驾驶玩漂移,走位风骚
首次:微软用GPT-4做大模型指令微调,新任务零样本性能再提升
挑战马斯克Neuralink,斯坦福全新脑机接口,直连大脑和硅基芯片

网址: 斯坦福100页论文评估大模型透明度:全都不及格 http://www.xishuta.com/newsview94536.html

所属分类:行业热点

推荐科技快讯